首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   6482篇
  免费   1163篇
  国内免费   2358篇
  2024年   9篇
  2023年   255篇
  2022年   271篇
  2021年   411篇
  2020年   449篇
  2019年   609篇
  2018年   454篇
  2017年   439篇
  2016年   418篇
  2015年   368篇
  2014年   448篇
  2013年   491篇
  2012年   318篇
  2011年   391篇
  2010年   304篇
  2009年   459篇
  2008年   409篇
  2007年   443篇
  2006年   433篇
  2005年   369篇
  2004年   256篇
  2003年   261篇
  2002年   216篇
  2001年   185篇
  2000年   197篇
  1999年   155篇
  1998年   129篇
  1997年   89篇
  1996年   81篇
  1995年   82篇
  1994年   85篇
  1993年   61篇
  1992年   56篇
  1991年   56篇
  1990年   51篇
  1989年   48篇
  1988年   30篇
  1987年   33篇
  1986年   29篇
  1985年   28篇
  1984年   18篇
  1983年   8篇
  1982年   22篇
  1981年   8篇
  1980年   13篇
  1979年   10篇
  1978年   9篇
  1977年   5篇
  1973年   9篇
  1958年   4篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
31.
Aim How important are frequent, low‐intensity disturbances to tree community dynamics of a cyclone‐prone forest? We tested the following hypotheses concerning the ‘inter‐cataclysm’ period on a remote Polynesian island: (1) tree turnover would be high and recruitment rates would be significantly higher than mortality; (2) low‐intensity disturbance would result in a marginal increase in tree mortality in the short term; (3) turnover would vary among species and would be associated with plant traits linked to differences in life history; and (4) mortality and recruitment events would be spatially non‐random. Location Tutuila, a volcanic island in the Samoan Archipelago, Polynesia. Methods We censused the tree (stem diameter ≥ 10 cm) community in 3.9 ha of tropical forest three times over a 10‐year period, 1998–2008. We calculated annual mortality, recruitment and turnover rates for 36 tree species. We tested for non‐random spatial patterns and predictors of mortality, and non‐random spatial patterns of tree recruitment. A 2004 cyclone passing within 400 km allowed us to measure the effects of a non‐cataclysmic disturbance on vital rates. Results Annual turnover was 2.8% and annual recruitment was 3.6%; these are some of the highest rates in the tropics, and likely to be a response to a cyclone that passed < 50 km from Tutuila in 1991. Species turnover rates over 10 years were negatively correlated with wood specific gravity, and positively correlated with annual stem diameter increment. Mortality was spatially aggregated, and a function of site, species and an individual’s growth rate. Recruitment was highest on ground with low slope. The low‐magnitude cyclone disturbance in 2004 defoliated 29% of all trees, but killed only 1.8% of trees immediately and increased annual mortality over 5 years by 0.7%. Main conclusions The inter‐cataclysm period on Tutuila is characterized by frequent, low‐amplitude disturbances that promote high rates of tree recruitment and create a dynamic, non‐equilibrium or disturbed island disequilibrium tree community. Species with low wood density and fast growth rates have enhanced opportunities for recruitment between cataclysms, but also higher probabilities of dying. Our results suggest that increases in the frequency of cyclone activity could shift relative abundances towards disturbance‐specialist species and new forest turnover rates.  相似文献   
32.
Abstract. Fine-scale structure of a species-rich grassland was examined for seasonal changes caused by manipulated changes in the availability of above and below-ground resources (additional illumination with the help of mirrors and fertilization) in a field experiment. If changes induced by fertilization — which are expected to lead to a reduction in small-scale diversity —are due to intensified light competition, they should be compensated for by additional light input. Permanent plots of 40 cm × 40 cm were sampled by the point quadrat method at three angles (60°, 90° and 120° from the horizontal North-South direction), using a laser beam to position the quadrats, in early July and early September. The applied treatments did not cause apparent changes in plant leaf orientation. The degree of spatial aggregation of biomass increased seasonally in fertilized, non-illuminated plots: greater productivity at a constant light supply led to a faster growth rate of potentially dominant species, as compared to the subordinate ones. Additional illumination mitigated this effect of fertilization, indicating that the observed changes in biomass aggregation were due to increased light competition. There was a considerable seasonal decrease of variance ratio (ratio of observed variance of richness at a point and variance expected at random) in fertilized only and in illuminated only plots. In fertilized plots this was due to the positive relationship between biomass aggregation and expected variance of richness. Biomass constancy occurs to be inversely related to deficit in variance of richness. In illuminated plots, in contrast, only the observed variance of richness decreased seasonally, indicating a more uniform use of space by different species. Evidently, a deficit in variance of richness can be caused by drastically different processes, showing that the variance ratio statistic may not have a significant explanatory value in fine-scale community studies.  相似文献   
33.
34.
Centaurea maculosa (Lam.) (spotted knapweed) reduces wildlife and livestock habitat biodiversity and increases erosion. Nutrient availability to plants may be used to accelerate succession away from spotted knapweed. Early‐successional plant communities often have high nutrient availability, whereas late‐successional communities are often found on lower nutrient soils. We hypothesized that removal of nutrients would change the competitive advantage from spotted knapweed to Pseudoroegneria spicatum (bluebunch wheatgrass) (late seral). In two addition series matrices, background densities of Secale cereale (annual rye) and Elymus elimoides (bottlebrush squirreltail) (3,000 seeds/m2) were used to remove nutrients from the soil. In another set of addition series matrices, nitrogen (33 kg/ha) or phosphorus (33 kg/ha) were added to the soil. Nutrient analysis of soil and vegetation indicated that annual rye and bottlebrush squirreltail reduced nutrient availability in soils. In another matrix, neither a background density nor nutrients were added. Data were fit into Watkinson's curvilinear model to determine the competitive relationship between bluebunch wheatgrass and spotted knapweed. This allowed comparison of the equivalence ratios (C) generated from each addition series. The C parameters are the per‐plant equivalent of bluebunch wheatgrass or spotted knapweed and can be interpreted as the ratio of intra‐to‐interspecific competition. The C parameters are also the equivalence ratio of the number of spotted knapweed it takes to have equivalent effect on bluebunch wheatgrass or the number of bluebunch wheatgrass having the equivalent effect on spotted knapweed. Without nutrient manipulation, spotted knapweed was more competitive than bluebunch wheatgrass. The C for bluebunch wheatgrass was 0.17, indicating that 0.17 knapweed plants were competitively equivalent to one wheatgrass. Annual rye changed the competitive balance in favor of bluebunch wheatgrass (C = 9.9). Addition of nitrogen, phosphorus, or the mid‐seral species did not change the competitive relationship between the two species. This preliminary study suggests that succession from spotted knapweed to late‐seral bluebunch wheatgrass community may be accelerated by altering resource availability.  相似文献   
35.
Thirty-nine species of cryptic fishes belonging to 16 families were captured on shallow reefs (0-20 m) in False Bay, South Africa using the ichthyocide rotenone. Five samples were collected in each of four depth zones (0-5, 6-10, 11-15 and 16-20 m). The area from which fish were collected in each sample was measured to give an estimate of density. The overall density of cryptic fishes in the area was 3.41 fish m-2, with the families Congrogadidae and Clinidae being numerically dominant, representing 27.9% and 22.3% of the total sample respectively. The Clinidae were by far the most diverse group, being represented by 17 species, while no other family was represented by more than three species. Multivariate analysis of numerical density revealed that partitioning of spatial resources did occur, with the shallowest samples (0-5 m) forming a group discrete from the deeper samples (6-20 m). Further analysis indicated that the amount of algal cover present was the most important factor influencing community structure, although the abundance of algae is in turn related to depth. The shallowest samples were dominated by members of the families Clinidae, Gobiesocidae and Bythitidae, while the Cheilodactylidae, Tripterygiidae and Ariidae were more important components of deeper water communities (6–20 m). Analysis of percentage volume of prey items in the diets of 21 species revealed that only two species shared diets that were more than 50% similar, and that partitioning of trophic resources was considerable. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   
36.
The diel change in dissolved oxygen concentrations were recorded with an automated incubator containing a pulsed oxygen sensor in Sarasota Bay, Florida. The deployments occurred during a ‘pre-bloom’ period in May to June 2006, and during a harmful algal bloom dominated by Karenia brevis in September 2006. The diurnal (daylight) increase in dissolved oxygen concentrations varied from 16 to 104 μmol O2 l−1 with the corresponding nocturnal decrease in oxygen varying from 16 to 77 μmol O2 l−1. Nocturnal respiration consumed 42–113% of the diurnal net oxygen production with the minimum and maximum during the pre-bloom period. Hourly production rates closely followed fluctuations in irradiance with maximum rates in the late morning. Hourly oxygen utilization rates (community respiration) at night were highest during the first few hours after sunset.  相似文献   
37.
Understanding ectomycorrhizal fungal (EMF) community structure is limited by a lack of taxonomic resolution and autecological information. Rhizopogon vesiculosus and Rhizopogon vinicolor (Basidiomycota) are morphologically and genetically related species. They are dominant members of interior Douglas‐fir (Pseudotsuga menziesii var. glauca) EMF communities, but mechanisms leading to their coexistence are unknown. We investigated the microsite associations and foraging strategy of individual R. vesiculosus and R. vinicolor genets. Mycelia spatial patterns, pervasiveness and root colonization patterns of fungal genets were compared between Rhizopogon species and between xeric and mesic soil moisture regimes. Rhizopogon spp. mycelia were systematically excavated from the soil and identified using microsatellite DNA markers. Rhizopogon vesiculosus mycelia occurred at greater depth, were more spatially pervasive, and colonized more tree roots than R. vinicolor mycelia. Both species were frequently encountered in organic layers and between the interface of organic and mineral horizons. They were particularly abundant within microsites associated with soil moisture retention. The occurrence of R. vesiculosus shifted in the presence of R. vinicolor towards mineral soil horizons, where R. vinicolor was mostly absent. This suggests that competition and foraging strategy may contribute towards the vertical partitioning observed between these species. Rhizopogon vesiculosus and R. vinicolor mycelia systems occurred at greater mean depths and were more pervasive in mesic plots compared with xeric plots. The spatial continuity and number of trees colonized by genets of each species did not significantly differ between soil moisture regimes.  相似文献   
38.
Body-size spectrum has proved to be a highly informative indicator to summarize the functional structure of a community at taxon-free resolution. In this study, an approach based on body-size spectrum of protozoan communities was used to detect the defense of microalgae against protozoan grazing. The biofilm-dwelling protozoan communities were used as a test predator system, and two algal species, Chlorella sp. and Nannochloropsis oceanica, were employed as test microalgae. A nine-day bioassay test was carried out by exposing biofilm-dwelling protozoan communities to a gradient of concentrations 100 (control), 104, 105, 106, and 107 cell ml−1 of both microalgae, respectively. Results showed that both algal species represented strong defense effects on the test predator system at different levels of concentration. The body-size distinctness of the protozoan assemblages showed a sharp decrease at high concentration level more than 106 cell ml−1 in both algal treatments. Based on the paired body-size distinctness indices of the protozoa, ellipse tests demonstrated that the body-size spectrum showed an increasing trend of departure from the expected pattern with increasing concentrations of both test algae. Thus, it is suggested that the body-size spectrum of protozoa may be used as a useful indicator to identify the defense of microalgae against protozoan grazing.  相似文献   
39.
40.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号